前言
为实现风电叶片长期稳定运转,需要在叶片上涂装防护涂层使得叶片具备优良的耐候、耐磨、防污等性能。文中介绍了各种合成高分子树脂材料在风电叶片保护领域的研究进展,包括应用最普遍、性能全面的聚氨酯,耐候性极佳、表面能较低的氟聚合物以及粘接性好、附着能力强的丙烯酸树脂等。这些聚合物以单一组分或几种材料复合的形式制备成单层或多层的防护涂层,以期使得叶片涂料具备优异的防护性能。
风能作为一种清洁的可再生能源,已越来越受到世界各国的关注,对风能的有效利用有助于实现能源结构多元化,减少环境污染。截止2009年底,我国风电实现并网达到1613万kW,同比增长92%。风力发电市场的迅猛拓宽,势必带动相关装置设备需求的快速增长,保证这些设备的质量对于促进风电发展尤为重要。
风电叶片作为发电风机的重要组成部分,是确保其在恶劣的环境下长期、稳定运转的关键所在。风电叶片的长度可达60m,叶片防雷击的工作已有多篇文献报道,但另一方面,由于风电叶片的制造材料如环氧树脂玻璃钢在常年经受沙尘、紫外线、暴雨的侵袭后很难保持完好,故需要对叶片表面进行涂装保护涂层以提高叶片的使用寿命,减少甚至实现叶片在20年以上的零维护。
本文主要介绍作为风电叶片防护涂层材料的几种聚合物树脂———聚氨酯、氟树脂、丙烯酸树脂等,并对其研究方向和发展进行了展望。
风电叶片涂层材料的性能要求
风电叶片涂料需要经受阳光暴晒,昼夜冬夏的高低温变化,在高速运转中,会受到风沙雨雪的剧烈冲刷,此外,大量沙石、水滴的粘附会严重影响其空气动力学性能以及降低发电机组的输出功率[5。作为风电叶片的涂料,需要具备的性能主要有:耐候性、耐磨性、优异的附着力、耐化学品性等,具体的技术指标如附着力需大于5MPa,自然表干时间应短于8h,500转的耐磨性测试后,质量损失少于20mg/500g等。
目前,国际上使用的风电叶片防护涂层材料以聚氨酯为主,主要是以溶剂型的聚氨酯底漆配以溶剂型的聚氨酯面漆,性能较好,同时价格适中。2010年,美国PPG公司推出高级薄膜型HSP-7401抗蚀耐候高性能聚氨酯底漆和AUE-5000聚氨酯面漆系统,进一步推广了聚氨酯在叶片涂料上的应用。为使得涂料具备更高的综合性能,近几年,也出现了利用氟化聚合物、丙烯酸树脂等配套制备风电叶片涂料。
聚氨酯材料
聚氨酯树脂具备优良的耐油耐磨性、耐化学药品性、较强的附着能力,故由其所制的涂料已最广泛地应用在风电叶片上。风电叶片涂料耐候性能要求极高,在利用聚氨酯配制该涂料时,以脂肪族或脂环族的多异氰酸酯为宜,避免选用易泛黄的芳香族类。
在当前风电市场上,溶剂型涂料占据了主导地位,但低挥发性有机化合物(VOC)、环保的高性能水性聚氨酯涂料显然更加符合风力发电“绿色能源”这一概念。水性聚氨酯涂料将成为风电叶片涂料的一个重要的发展方向和研究热点。随着风电叶片涂料技术的不断发展,工艺技术的不断推陈出新,水性聚氨酯涂料势必将在风电叶片涂料上占据一席之地。
氟聚合物材料
风电叶片普遍面临三个问题:冰粘附和冲击、昆虫的累积、沙和水滴的侵蚀。
传统氟树脂以聚偏氟乙烯(PVDF)为代表,PVDF涂料户外的使用寿命可达20年以上。尽管具备优良的耐候性、韧性好、耐粉化等特点,但由于PVDF涂料的涂敷需要经过高温烘烤,加工过程稍显繁琐。
由于氟碳涂料价格昂贵,且以PVDF为代表的传统型氟碳涂料需要高温固化,限制了其在风电叶片上的应用。利用有机氟改性聚氨酯或其它树脂既提高性能、降低成本又能解决氟树脂附着能力差、不能常温固化的缺陷。可以预见,这类涂料的诞生将推动风电叶片涂料的发展乃至整个风电行业的大步前进。
聚丙烯酸酯材料
丙烯酸树脂涂料因其耐候、耐光、耐腐蚀性能优异,粘接性好,对底材的附着能力强,已在各个领域得到广泛应用。但该树脂耐水、耐溶剂性能相对较差,且不耐磨,所以一般将丙烯酸树脂作为风电叶片涂料的底漆使用。
美国PPG公司在风电叶片涂料中掺入适量丙烯酸类聚合物,合适的丙烯酸聚合物可以是丙烯酸的烷基酯和不饱和烯类的聚合物,如甲基丙烯酸甲酯和丙烯腈,而丙烯酸的共聚物也可以含有羟基组分,以方便涂料进行交联,特别是直链上含有2~4个碳原子的烷基羟基结构。
利用有机氟改性丙烯酸酯,改性后的涂料不仅保持了原有的丙烯酸酯的特性,还提高了涂层的耐候性、抗污性等。在国外,氟代丙烯酸酯聚合物已经成功地用作桥梁、建筑、汽车等耐候性要求较高的外用涂料,能否将该类聚合物引入到风电叶片涂料上是一个值得探讨和研究的问题。
其它材料
聚天门冬氨酸涂料是近几年新兴的高性能双组份涂料,耐黄变,性能稳定。有机硅涂料具备优良的耐候性、耐高低温性、抗水性、耐沾污等性能,已广泛应用于建筑、航天等领域。
环氧树脂涂料具备较高的粘接力,耐候性较强,防腐性能卓越,通过添加纳米无机材料对环氧树脂涂料进行改性,可以提高涂层的耐磨及防腐能力Karmouch在环氧涂料中添加纳米级二氧化硅颗粒得到超疏水涂料,将该涂料应用在风电叶片基材上,结果发现涂层表面接触角可达到152°,且具备较强的紫外线耐受力。
除添加无机纳米材料外,直接涂抹无机薄膜作为防护涂层也能对叶片起到保护作用。Ni-P薄膜作为应用甚广的无机涂层,具备良好的耐磨和耐腐蚀性Lee将Ni-P薄膜涂布在风电叶片上,在较高的P含量(P>7%)和较小的微空隙下,当底材玻璃纤维增强塑料(GFRP)的表面粗糙度超过0˙3μm后,涂料的防腐和耐磨性能将有所提高,此外,膜厚和抛光条件对涂膜性能也有影响。
结束语
现如今,居高不下的维修成本,是大力发展风力发电的绊脚石。研究一种经济高效的叶片涂料已成为推广风电产业发展的一个亟待解决的问题。风电叶片防护涂层材料的研发不局限于单一的某种材料,几种树脂的配套使用或通过改性可使涂料性能更趋优异,合理搭配聚氨酯、有机氟、丙烯酸类等聚合物,特别是利用有机氟改性有助于获得性能全面的叶片涂料。当前,我国的风电叶片涂料大部分还依赖进口,但相信随着研究的不断深入,综合性能优异的国产风电叶片涂料的问世指日可待,这对于促进风电的产业发展,提高国产风力机组在国际市场的竞争能力,实现我国风电设备制造的国产化意义重大。
文章来源于网络。
关注我们